Dermatoglyphics and Schizophrenia: A meta-analysis and investigation of the impact of obstetric complications upon a–b ridge count

Elvira Bramon a,*, Muriel Walshe a, Colm McDonald a, Beatriz Martín b, Timothea Toulopoulou a, Harvey Wickham a, Jim van Os c, Paul Fearon a, Pak C. Sham a, Lourdes Fañanás b, Robin M. Murray a

a Division of Psychological Medicine, Institute of Psychiatry, P.O. Box 63, De Crespigny Park, London SE5 8AF, United Kingdom
b Laboratori d’Antropologia Animal, Universitat de Barcelona, Spain
c Section of Social Psychiatry & Psychiatric Epidemiology, Maastricht University, The Netherlands

Received 8 May 2004; received in revised form 26 August 2004; accepted 29 August 2004
Available online 12 October 2004

Abstract

Background: Patients with schizophrenia show deviances in their dermatoglyphics, in particular reductions in palmar a–b ridge counts (ABRCs), which are evidence of an early developmental deviance. However, the severity or the origin of these ABRC changes has not been established.

Method: (i) We examined the published literature on the ABRC in patients with schizophrenia against controls with a random effects meta-analysis. (ii) We used linear regression to study the ABRC in our sample of families including 125 patients with schizophrenia, 107 of their unaffected relatives and 98 controls. (iii) The effect of obstetric complications on the patient’s ABRC was examined using the Lewis Murray scale.

Results: The pooled standardised effect size of ABRC differences between patients and controls obtained by our meta-analysis was 0.39 (95% CI: 0.05–0.73; p=0.03). In our sample, there were no significant differences in ABRCs between those with schizophrenia, their relatives and controls. Only those patients with obstetric complications had significantly reduced ABRC compared to controls (p=0.01).

Conclusions: We confirmed the presence of significant yet mild ABRC reductions in schizophrenia. These represent a subtle deviance from the norm and could be present in certain subsets of patients, possibly those who suffered early developmental insults.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Dermatoglyphics; a–b Ridge count; Obstetric complications; Family study; Schizophrenia; Meta-analysis

* Corresponding author. Tel.: +44 (0) 207 848 5036; fax: +44 (0) 207 701 9044. E-mail address: e.bramon@iop.kcl.ac.uk (E. Bramon).

0920-9964/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.schres.2004.08.022
1. Introduction

Epidermal ridges, also known as dermatoglyphics, appear on the hand between weeks 6 and 15 of life, and after this period, they remain unchanged (Davis and Bracha, 1996). Patients with schizophrenia display an increased prevalence of apparently innocent changes in the patterns and counts of their dermatoglyphics (Fañanás et al., 1990; Bracha et al., 1991; Saha et al., 2003). In particular, a number of studies, summarised in Table 1, show that the a–b ridge count (ABRC), a quantitative dermatoglyphic measure of the palm, is reduced in patients with schizophrenia. However, several studies have not found such a–b ridge count reductions (Table 1) and the severity or the origin of such deviances has not been established.

Dermatoglyphic alterations in schizophrenia are markers of disrupted early development and contribute support to the neurodevelopmental model of schizophrenia (Murray and Lewis, 1987; Bramon and Murray, 2001). They show that an insult, whether genetic, environmental or both, occurred during early–mid gestation (Green et al., 1994; Rosa et al., 2002).

We set out to perform a meta-analysis of the published literature on ABRC in schizophrenia. We also examined the ABRC in our sample of families with members affected with schizophrenia.

2. Methods and materials

2.1. Meta-analysis

A meta-analysis of peer-reviewed articles comparing the a–b ridge count in patients with schizophrenia against controls was conducted in both Medline and in Science Citation Index from January 1983 to December 2003. For each primary study, the standardised effect size of the ABRC was defined as the difference between control and patient group means divided by the pooled standard deviation. The standardised effect sizes were subsequently analysed using random effects meta-analysis, which provides a pooled effect size after weighting the effect size of each primary study by the inverse of its variance. A test of heterogeneity between study results was also carried out. We tested for publication bias using Begg and Mazumdar’s (1994) adjusted rank correlation test. Further details on meta-analysis methods used can be found in Bramon et al. (2004a,b).

2.2. Local study

This included 125 probands, 107 of their unaffected first-degree relatives and 98 unrelated controls with no personal or family history of psychosis. Further details on the nature of the sample have been described previously (McDonald et al., 2002; Bramon et al., 2004a,b).

Table 1
The a–b ridge count in schizophrenia: studies published from 1983 to 2003

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample size (P/C)</th>
<th>Population</th>
<th>Patients mean (S.D.)</th>
<th>Controls mean (S.D.)</th>
<th>ES</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fañanás et al., 1990</td>
<td>125/72</td>
<td>Spanish</td>
<td>76.60 (9.78)</td>
<td>81.53 (9.81)</td>
<td>0.50</td>
<td>*</td>
</tr>
<tr>
<td>Turek, 1990</td>
<td>310/400</td>
<td>Croatian</td>
<td>71.34 (9.88)</td>
<td>84.14 (12.03)</td>
<td>1.15</td>
<td>***</td>
</tr>
<tr>
<td>Fananas et al., 1996</td>
<td>92/69 (sample a)</td>
<td>British</td>
<td>76.20 (11.10)</td>
<td>81.40 (11.40)</td>
<td>0.46</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>339/59 (sample b)</td>
<td>British</td>
<td>79.20 (9.40)</td>
<td>83.00 (5.10)</td>
<td>0.43</td>
<td>*</td>
</tr>
<tr>
<td>Cantor-Graae et al., 1998</td>
<td>60/75</td>
<td>Swedish</td>
<td>79.94 (9.37)</td>
<td>80.24 (9.48)</td>
<td>0.03</td>
<td>n.s.</td>
</tr>
<tr>
<td>Fearon et al., 2001</td>
<td>150/92</td>
<td>Irish</td>
<td>78.00 (16.1)</td>
<td>82.60 (14.70)</td>
<td>0.29</td>
<td>*</td>
</tr>
<tr>
<td>Reilly et al., 2001</td>
<td>27/37</td>
<td>Irish</td>
<td>79.19 (14.94)</td>
<td>84.17 (11.22)</td>
<td>0.39</td>
<td>n.s.</td>
</tr>
<tr>
<td>van Oel et al., 2001</td>
<td>19/70</td>
<td>Dutch</td>
<td>78.41 (12.19)</td>
<td>80.73 (10.53)</td>
<td>0.21</td>
<td>*</td>
</tr>
<tr>
<td>Saha et al., 2003</td>
<td>181/228</td>
<td>Australian</td>
<td>84.31 (9.88)</td>
<td>83.83 (10.89)</td>
<td>0.05</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Published studies included in the meta-analysis of the ABRC comparing patients with schizophrenia and controls. ES: effect size, calculated as (mean for controls–mean for patients)/pooled standard deviation. The P-values of the original studies were either n.s.=non significant, *=significant at the 5% level or ***=significant at the 1% level.
et al., 2004a,b). All participants were of Caucasian ethnicity and underwent a detailed clinical assessment to obtain DSM 4 diagnoses. They all gave written informed consent to enter the study. This research was approved by the Institute of Psychiatry Ethical Committee.

Obstetric data was gathered via maternal interview using the Lewis–Murray scale (Lewis et al., 1989). Mothers were available and willing to participate for 96 patients only. Those patients were classified in two subgroups having either ‘definite’ complications or alternatively having none or ‘equivocal’ complications.

2.3. Dermatoglyphic analysis

The a–b ridge count is a quantitative dermatoglyphic metric of the second inter-digital area of the palm. BM and LF, who were blind to diagnosis and obstetric complication data, measured the a–b ridge counts according to Cummins and Midlo (1961). Further details are described in Fig. 1.

2.4. Statistical analyses

Comparisons of the total a–b ridge count across the three groups were conducted using linear regression with robust standard errors, accounting for any correlations within families. Only where the effect of group was significant were post hoc comparisons and multiple testing adjustments conducted. Finally, a subsidiary linear regression analysis was conducted to examine the impact of obstetric complications on ABRC with two planned comparisons: (i) Patients with equivocal or no obstetric complications against controls. (ii) Patients with definite obstetric complications against controls. All analyses were carried out using STATA 7.0 (STATA, College Station, TX, USA).

3. Results

3.1. Meta-analysis of the previous literature

We identified nine studies suitable for analysis, which are summarised in Table 1, and included 1303 patients. The a–b ridge count (ABRC) is the number of ridges between triradii A and B for both left and right hand added together (Cummins and Midlo, 1961).

Fig. 1. The a–b ridge count. Whenever three ridge systems meet at a point this is known as triradius. There are usually four triradii in each palm, placed at the base of digits 2 through 5. The triradii at the base of the index and middle fingers are known as A and B, respectively. The a–b ridge count (ABRC) is the number of ridges between triradii A and B for both left and right hand added together (Cummins and Midlo, 1961).
patients and 1102 controls. Using random effects meta-analysis, the pooled standardised effect size for the ABRC was 0.39 (95% CI: 0.05–0.73; \(p=0.03\)). There was significant heterogeneity between studies \((p<0.001)\). Begg’s test revealed that there was no evidence of a significant publication bias (coefficient=−5.01; \(p=0.16\)). However, the number of studies (9) used for this test is small and therefore the power to detect bias is limited (Begg and Mazumdar, 1994). Fig. 2 shows a forest plot with the main findings of the meta-analysis.

3.2. Local study

3.2.1. Analysis of the a–b ridge count in our sample of families

The mean a–b ridge counts were found to be similar for the patients, relatives and controls as can be seen in Table 2. There was no significant effect of group on the a–b ridge count \([F(2,219)=0.87; \(p=0.42\)]\), so no further post hoc group comparisons were conducted.

3.2.2. Is there a relationship between total a–b ridge count and obstetric complications amongst our patients?

As can be seen in Table 2, the relationship between a–b ridge count and OCs was examined in a subsample of 96 patients whose mother agreed to be interviewed. Patients without obstetric complications did not differ significantly from controls in ABRC. Compared to controls, those patients who suffered definite obstetric complications had significantly reduced ABRC \([p=0.01; \text{regression coefficient}=−4.91; 95\% \text{ CI}: −8.77 \text{ to } −1.05]\).

4. Discussion

Our meta-analysis confirmed that patients with schizophrenia have reductions in their a–b ridge count that are statistically significant yet of mild severity (effect size of 0.39). As can be seen in Fig. 2, the study by Turek (1990) substantially deviates from the remaining primary studies. The meta-analysis exclud-
ing this apparent outlier provides a smaller yet still significant effect size of 0.27.

Thus, we believe that the ABRC reductions in schizophrenia exist, but are just subtle deviations from the norm. It is also plausible that they are only present in certain subgroups of patients; possibly those with more severe forms of the illness (Cannon et al., 1994). If so, it is not surprising that our predominantly stable and high-functioning outpatients had normal a–b ridge counts. Similarly, and coinciding with findings by Rosa et al. (2000), our larger sample of unaffected relatives also had normal ABRC.

Twin studies consistently show that the ABRC is strongly influenced by non-shared environmental influences rather than being genetically determined (Bracha et al., 1991; 1992; Van Oel et al., 2001). Although, our design does not allow claims about causation of ABRC deviances, it seems interesting that only those patients who suffered obstetric complications showed abnormally reduced ABRC, while patients without obstetric events and unaffected relatives did not differ from controls. This supports the idea that the subtle a–b ridge count reductions described in schizophrenia could be related to early environmental insults like obstetric complications; which, as highlighted in the meta-analysis by Cannon et al. (2002), are more likely to occur to the patients than to their relatives or controls.

4.1. Limitations

Firstly, although our sample is large, it is not epidemiological. Secondly, our OC data were collected by maternal interview and recall bias cannot be ruled out. Finally, because their mothers were not available for interview, we could not examine the association between ABRC and obstetric complications in relatives or in controls. It is therefore possible that the correlation between obstetric complications and reduced AB ridge count found in our patients may be in fact unrelated to schizophrenia. Replication in unaffected groups is required. We used the broad term OCs including any complications during pregnancy or delivery. Clearly, the link between perinatal complications and ABRC reductions (which must have taken place before the 16th week of pregnancy) seems less plausible (McNeil and Cantor-Graae, 1999). However, evidence exists where perinatal obstetric complications have been associated with insults occurring earlier in pregnancy, for example, foetal hypoxia (Nelson and Ellenberg, 1986; O’Callaghan et al., 1992; McNeil et al., 2000; Cannon et al., 2002).

In conclusion, we confirmed the presence of significant yet mild ABRC reductions in schizophrenia. These represent a subtle deviance from the norm and could be present in certain subsets of patients, particularly those who suffered early developmental insults.

Acknowledgements

This study was supported by the Wellcome Trust, the Schizophrenia Research Fund and the Stanley Medical Research Institute. E. Bramon, C. McDonald and M. Walshe are sponsored by The Wellcome Trust.
and H. Wickham by the Medical Research Council. We would like to thank all the families who participated in the study and the National Schizophrenia Fellowship—Rethink for helping in the identification of families.

References

